Listy Biometryczne - Biometrical Letters
Vol. 38(2001), No. 1, 11-31

A semi-stochastic grand tour for identifying outliers
and finding a clean subset

Anna Bartkowiak

Institute of Computer Science, University of Wroclaw,
Przesmyckiego 20, 51-151 Wroclaw, Poland

SUMMARY

The grand tour method has proved to be a very efficient method in detecting outliers.
The present paper proposes further modifications of the grand tour algorithm by
constructing robust concentration ellipses. It is also emphasized that the same method
can be used for obtaining a “clean” data set. Such a subset may be the starting point
for robust multivariate procedures. The method is simple, can be easily implemented
on parallel computers, and as such may be used in data mining for large data sets.
The considerations are illustrated with two benchmarks and one real medical data set.

KEY WORDS: multivariate outlier, graphical methods, grand tour, linked plots, ellipse
of concentration.

1. Introduction

An outlier is an observation (data vector) not belonging to the pattern suggested by
the majority of the observations. The outlyingness may be due to a gross error in
measurement, a typing error, or just an atypical object.

Outliers may be very influential for models constructed on the basis of the ana-
lysed data; they may distort the estimated relationships among the considered va-
riables (changing, for example, the magnitude and signs of the calculated correlation
coefficients), they may yield quite wrong parameters characterizing the established
functions.

Therefore before starting the proper data analysis one should always check the
data for outliers.

The problem: how to find and identify outliers hidden in the data was and is still
extensively considered and discussed in the statistical literature.
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In the following in Section 2 a very short survey of the main recognized methods
for outlier detection is presented. The methods outlined in that section are based
mainly on some mathematical and statistical considerations.

In Section 3 the grand tour method (Asimov 1985, Bartkowiak and Szustalewicz,
1997) is shortly presented. The grand tour is based mainly on a graphical procedure.
Bartkowiak and Szustalewicz (1997, 1998) have added to the classical concept a sto-
chastic element: the concentration ellipse constructed using a confidence parameter.
Such a supplemented grand tour is called a semi-stochastic grand tour. So far the
semi-stochastic grand tour was considered primarily as a tool to identify suspected
outliers. However, the same method may serve also other purpose: after changing
eventually some parameters of the algorithm a ‘clean’ subset of data may be obtai-
ned. This is important for data analysis, because a clean data set is the starting point
for many robust procedures. The need for a clean subset was stated a.o. by Hadi
(1992), Billor et al. (2000) and Riani and Atkinson (2000).

Next, Section 4 illustrates the practice of finding outliers and clean subsets. We
consider here two typical benchmarks: the Bradu-Hawkins-Kass and the modified
wood gravity data (source: Rousseeuw and Leroy, 1987). Additionally a real medical
data set, the LIEB125 data, is considered.

In Section 5 final remarks and conclusions are given.

2. A short survey of statistical methods for outlier detection

2.1. Presenting some widely known methods for outlier detection

The problem of detection or identifying outliers has been notified since long; may be
so long as data analysis is performed. Many methods have been proposed for this
topic and have existed for many years; also many of them have been reported to fail
for some cases, especially in detecting clusters of outliers, which may mask each other.
Most of the proposed methods start with calculation of the covariance matrix
(ordinary, censored or robustified). The hidden atypical observations may inflate or
swamp the covariance matrix, and obtaining a clean subset containing only typical
points may be not so easy. A survey of early methods may be found in Gnanadesikan
and Kettenring (1972), then in the book by Barnett and Lewis (3rd edition, 1994).
More recent results and references to other relevant results may be found in the papers
by Rocke and Woodruff (1996), Billor et al. (2000) and Riani and Atkinson (2000).
Methods, which have gained in the last decade a considerable popularity, are:
1. Mahalanobis distances calculated from robust covariance matrices obtained from
weighted data vectors (Huberized or Hampelized weights), see e.g. Campbell
(1980).
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2. MVD or MCD, i.e. minimum volume determinant or minimum variance deter-
minant methods, proposed by Rousseeuuw and coauthors (see, e.g., Rousseeuuw
and Leroy, 1987) with several subsequent modifications, e.g.. Rousseeuuw and van
Zomeren (1990), Rousseeuuw and van Driessen (1999). A feasible algorithm for a
MCD estimator in multivariate data was proposed by Hawkins (1994).

3. Stalactite plots, proposed by Atkinson, see e.g. Atkinson and Mulira (1993), At-
kinson (1994).

4. BACON, i.e. blocked adaptive computationally efficient outlier nominators, pro-
posed by Hadi and coauthors (see Hadi and Velleman, 1997; Billor et al. 2000).

5. Hybrid algorithm incorporating affine-equivariant methods and random restarts,
see Woodruff and Rocke (1993), Rocke and Woodruff (1996).

What concerns the first two enumerated methods — experience has shown that
they have failed in many situations and are not trustworthy. In particular, the MVD
and MCD methods, as based on combinatorial evaluations, have proved to be com-
putationally expensive and unfeasible for larger number of variables; also they were
often not able to detect all outliers, especially when these have occurred in masking
clusters; see Billor et al. (2000) for further references where criticism of the methods
may be found.

The three remaining methods are more trustworthy. BACON relays on a ‘clean’
starting set, while the stalactite and the hybrid algorithm perform many random
restarts.

2.2. Probabilistic evaluations

All the methods presented in the preceding subsection perform at some stage of their
work some evaluations based on statistical tests. In particular they evaluate the
significance of the found outliers by calculating their Mahalanobis distances from a
(robust) center of the analyzed data cloud.

The evaluated distances are supposed to have (at least asymptotically) a x distri-
bution, with p denoting the number of the considered variables. Just this supposition
is a week point in the mathematical approach to identify outliers. The presump-
tion that Mahalanobis distances have a x? distribution is valid only for data having
multivariate normal distribution, which happens rarely in practice.

A remedium for this handicap (i.e. non-normality of the data) might be: to apply
to the data some transformation, which would bring the observed distribution nearer
to normality. This topic has been pursued since long; see e. g- Atkinson (1987), Velilla
(1995), Riani and Atkinson (2000). However, it has to be said that the transformed
data may be difficult for interpretation.



14 A. Bartkowiak

2.3. The graphical approach

The idea of the graphical approach is to perform a kind of visualization of the data
and look directly whether there are points which are much outstanding from the
main bulk of the data. Widely in use are two-dimensional scatterplots constructed
from observations on pairs of variables; also scatterplots constructed from principal
coordinates.

Three-dimensional displays (of 3 variables) can be constructed using interactive
graphics displaying views on a computer screen. Spin plots are a well known tech-
nique used for that purpose. Another technique for displaying multivariate data are
scatterplot matrices. One of the earliest implementations of spin plots and scatter-
plot matrices appeared in XLispStat (Tierney, 1990). Today these techniques are
implemented in most of statistical commercial packages.

Another technique, not so widely in use, is the parallel coordinate plot. One
early implementation of that method may be found in XLispStat (Tierney, 1990). A
specific example illustrating suspected outliers by parallel coordinate plots is shown
in Bartkowiak et al. (1999), where also further references may be found.

A still more interesting technique is the grand tour (Asimov, 1985). It permits
to obtain sequentially, as in a continuing movie, two-dimensional instances of views
from (in) multivariate space.

Quite a different class of methods is yielded by the neural network methodo-
logy. Specially the Self-Organizing-Maps (SOMs) are very promising in this branch
of methods; see the papers by Morlini (1998) and Bartkowiak et al. (1999) for some
applications of self-organizing maps in finding outliers.

All the graphical methods, when implemented in an interactive computer environ-
ment, benefit much from such possibilities as linking objects and graphs, selecting,
brushing and coloring, carried out in an interactive mode.

Using these additional possibilities detecting suspected outliers and verifying them
may be carried out quite effectively.

3. The grand tour with concentration ellipses

3.1. The concept of the grand tour and its implementation

The concept of the grand tour has appeared firstly in the paper by Asimov (1985).
The idea was to obtain a sequential set of projections which would become dense in
the manifold of all projections, thus permitting to obtain views which would contain
possibly many (a dense set of) views of the data points contained in the analyzed
data cloud. This goal may be realized in a variety of ways. Several proposals may be
found in Asimov’s paper.
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The problem was elaborated in subsequent years by other researchers (for refe-
rences, see e.g. Bartkowiak and Szustalewicz, 1997). Among others Tierney (1990)
designed in XLispStat a simple procedure, tour—plot, for that purpose. The approach
of Bartkowiak and Szustalewicz (1997) follows that of Tierney’s, which means that
their approach is based also on the concept of rotation.

Rotation may be considered both from a formal mathematical and from a purely
geometrical point of view.

Mathematically rotation is considered as an algebraic transformation of the data
matrix X by an orthogonal matrix A. Applying the transformation Ay, to the data
matrix X,,x, we obtain a transformed matrix X,(f;)p = XoxpApxp-

Geometrically rotation is considered as a physical act of rotating the space in
which the data points are located. The data cloud may be imagined as enclosed in
a p—dimensional sphere (ball). Somewhere outside the sphere an observer is located.
The observer sees at any moment the projection of all the points onto a 2-dimensional
plane perpendicular to the direction of his look, thus some points my be overshadowed
by some others. To obtain different views the observer should either to move himself
around the sphere, or to rotate the sphere. In both cases the observer has in view
some dynamic projections of the data points onto some 2-dimensional planes.

The algorithm out-tour elaborated by Bartkowiak and Szustalewicz (1997) com-
bines both the mathematical and the geometrical approach. They assume that the
observer is positioned in such a way that he has in view the plane < X3, X5 > spanned
by the coordinate axes of the first two variables. The observer will see and perceive
the points projected onto that plane. In practice the observer sees the plane on the
screen of his computer and observes what is going on when subsequent rotations are
executed.

After rotating the sphere with the data points, but leaving the coordinate system
unrotated, the fixed plane < X;, X, > will show the coordinates of the rotated
points, and, at the same time, the projections of the rotated points onto < X7, Xa >.
Practically, the ’old’ content of this plane containing the projections of the points
before the rotation will be cleared, and new content exhibiting projections of the
rotated points will be redrawn. When the rotation (and the projections) are done in
small steps, the observer may perceive the impression that points in the screen are
moving.

Below we show main points of the algorithm. It works in cycles of actions (steps)
repeated in sequence.

Before beginning the actions we draw a scatterplot of the first two variables and
a linked count plot exhibiting the values: (4,count(i)), ¢ = 0,1,...,(n — 1), with
count(i) = 0 for each ¢. Next we repeat in turn cycles of actions composed of the
following steps:
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1. The direction of the rotation and its angle « are established. Having these fixed
the rotation matriz A is constructed.

2. The actual data matrix X is transformed yielding X (*r):
X)) = XA. (1)

3. The previous content of the exhibition in the observed scatterplot is cleared and

a new content displaying the points (xgr) , gr)) i=

— 1, is drawn.

4. A concentration ellipse is superimposed onto the scatterplot displaying the pro-
jection of the transformed points. The role of this ellipse is to focus our attention
on the points located far — in the Mahalanobis metric — from the data center. The

concentration ellipse is given by the equation
- T 2
(x—m)S~ (x~m)" <x3 4 (2)

where x = (z1,22), m = (m1,my) are the coordinates and their mean (median),
S is the covariance matrix of x and ng g 1s the quantile of order 3 in the chi-square
distribution with 2 degrees of freedom.

5. The values of the variable count are updated: for points i (: = 0,...,n — 1)
described by a vector x not satisfying (2) we substitute: count (i) := count (i) +1.
Next the content of the count plot is redrawn.

More detailed description of the out-tour algorithm may be found in Bartkowiak
and Szustalewicz (1998), where also the derivation of the formula for the rotation
matrix A is given. The same paper shows also results of simulations aimed at finding
out how many cycles are needed to obtain a reasonable uniformity of the projections.

In Figure 1 we show three plots illustrating the idea of the grand tour — performed
for the LIEB125 data (see Subsection 4.3). The plots exhibit results obtained after
the first cycle of the algorlthm In the left plot of that figure the scatterplot of the
values (7, 2{"), i =0,...,n — 1, after the first rotation is exhibited. The middle
plot of Figure 1 contams the concentration ellipse constructed on the basis of the
displayed two-dimensional points. One may notice here that the points no. 3, 4, 42,
124 have appeared outside the concentration ellipse. Comparing this plot with that
on the left one may state how much the concentration ellipse helps in fixing some
outlying points.

The outlyingness of the four points can be also stated when looking at the count
plot located at the right side of that figure.

Let us underline that the concentration ellipse and the count plot play a different
role: The concentration ellipse (redrawn after each rotation and projection) shows
how much the given points are outstanding in the actual projection; the count plot
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Figure 1. The idea of the grand tour. View after first rotation. Left: Scatterplot of
transformed values of the first two columns of the data matrix. To gain a clearer presentation,
the axes of the scatterplots both in this and the middle plot are surpressed. Middle: The
same, but with the 95 % ellipse of concentration superimposed and with identification of
points located outside the ellipse. Right: Linked count plot, indicating that points no. 3, 4,
42, 124 were found for one time outside the concentration ellipse

(updated after each projection) shows how many times, i.e., in how many projections
all the analyzed data points were outstanding so far.

For the situation exhibited in Figure 1, the count plot shows that the points no.
3, 4, 42, 134 have appeared once (for one time) beyond the ellipse border (this is
obvious, because there was only one rotation performed so far).

Performing such rotations in sequence we notify more and more points, which —
in various rotations — appeared at outlying positions.

After performing several hundreds of such rotations, we have a record of data
points which appeared at least one time at outstanding position, thus might be con-
sidered as suspected outliers, i.e. as representing data vectors atypical in magnitude
or interdependence structure of their components.

In Figure 2 we show two instances of views produced by the grand tour. One can
see that the data contains several clearly outstanding data points and some others
that appear at the border of the main bulk of the data.

Looking at the count plots one may notice that quite a large part of the data
points has zero counts, which means that these points have never appeared outside
the borders of the concentration ellipse. We propose to consider these points as
constituting a ’clean’ subset.

The grand tour has been successfully applied to many sets of data. It has been very
helpful in showing what kind of data we deal with. It has also clearly identified some
outliers in several benchmarks and several real data sets. For the later it has been
observed that the differentiation between the main bulk of data and some peripheral
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Figure 2. Two views (a), (b) obtained when running the grand tour for the LIEB125 data.
Left exhibits: ordinary concentration ellipses; right exhibits: corresponding count plots.
Most of the points in the count plots have zero counts, which means that they were always
notified in the interior of the concentration ellipse

observations is not so sharp and other criteria are needed to identify finally which
observed data vectors are outliers.

What concerns the concentration ellipse, it has been stated, that the outliers
hidden in the data may inflate the covariance matrix. The concentration ellipse
evaluated from inflated covariances appears then too large and cannot sort out the
outliers.

To get the outliers outside the borders of the ellipse, one has to diminish the
confidence parameter (3, say to § = 0.90 or 8 = 0.75, which puts the user in an
uncomfortable situation. To copy with it, we propose to construct a robust concen-
tration ellipse.

3.2. Construction of a robust concentration ellipse

Because in the out-tour algorithm the construction of concentration ellipses is carried
out many times (hundreds or thousands), we need a relatively fast algorithm for
calculation of the parameters and drawing the ellipse. Certainly, we can not use for
that purpose extensively iterative algorithms, which need many iterations to attain
convergence.
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After analyzing several algorithms we have chosen an old method described in
Gnanadesikan and Kettenring (1972), also Gnanadesikan (1997). The method calcu-
lates the elements of a covariance matrix pairwise, using sums and differences of the
considered variables. The following identity (called in the following DSD, Difference
of Sum and Difference) is exploited:

CO’U(Xk,Xl) = 0.25[1)0.7‘(Xk + Xl) — 'uar(Xk - Xl)],

with cov(-) and var(-) denoting the covariance and variance of the random variables.

The point is that the variances var(X + X;) and var(Xy — X)) can be estimated
by a robust method, using, e.g., the MAD statistics, i.e. the Median of Absolute
Deviations from the median:

var€ = MAD(£)/0.675, (3)

with ¢ denoting generally the computed variable.

In the paper we have simplified the calculations of the M AD by taking one half
of the InterQuartile Range (IQR) of the computed variable. Thus we have applied
the following formula for robust estimation of the variance of the variable &:

varé = IQR(¢)/1.35. . (4)

The method explained above is very fast; however, it may yield negative definite
covariance matrices not suitable for calculation of S™1, needed for the concentration
ellipse (see formula 2). A remedy for this would be to find a supplement A to S,
which makes S 4+ A a positive definite matrix. Bartkowiak and Zigtak (2000) show
how to find an appropriate A.

Meanwhile, we may state the following: our ellipse is constructed from values
Z41, T52 which were obtained as linear combinations of the original observations. By
the central limit law — even if the original observations are coming from non-normal
distributions, their linear combination might be quite near to the normal variate.
This means practically that we may be permitted to use not so much sophisticated
robust methods, and we may have hope that these less sophisticated methods will
work quite efficiently when running the grand tour.

3.3. Search for a clean subset of data vectors

As is pointed out in the paper by Billor et al. (2000), the outlier detection methods
provide the analyst with a set of proposed outliers, which next can be corrected (if
identifiable errors are the cause) or taken out from the body of the data for a separate
analysis. The remaining data then more nearly satisfy homogeneity assumptions and
can be more safely analyzed with standard methods.
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So the problem is to obtain a homogeneous data set not containing suspected
outliers. Hadi (1992) calls such set a clean data set. Some recent algorithms (e.g. the
general BACON algorithm, Billor et al., 2000; the forward search combined with the
fan plot, Riani and Atkinson, 2000) start from a small ‘clean’ data set and then, after
adding to that set a number of the remaining observations, perform a kind of testing,
whether the data set with the added observations can still be considered as a ‘clean’
data set.

The crucial step in this procedure is to find a really clean data set, not containing
any masked outliers. Some analytical methods for finding such a basic clean subset
are suggested by Hadi (1992) and Billor et al. (2000). The basic subset is usually
small and next it is augmented by a kind of forward search.

We make another proposal: we find a clean subset from the results obtained by
the grand tour method.

Let us look once more at the results of the grand tour displayed in the count plots
visible in Figure 2. Remind that the ordinate (y) in the count plot tells us how many
times a given point (identified by its number marked in the z-axis) has appeared
outside the concentration ellipse.

Figure 2 was obtained for the LIEB125 data containing values for n = 125 patients
characterized by p = 9 variables each. Looking at the count plots we see that:

— There is a dozen or more of points which have occurred frequently outside the
concentration ellipse — thus these points are suspected to be outliers.

~ A good deal of the points has zero frequency count: these are points which appe-
ared always inside the concentration ellipse.

The proposal is: take as the clean data set those data vectors which have zero
frequency count in the count plot.

4. Practical examples

4.1. The Hawkins—Bradu-Kass data

These are artificial (synthetic) data constructed by Hawkins et al. (1984) with the
special purpose to show a situation where truly influential data points are not detected
by classical diagnostic — because of a masking effect. The data consists of n = 75
cases (data vectors) each characterized by 3 explanatory and 1 predictor variable.

The source of the data may be found in the original paper by Hawkins et al.
(1984), also in the book by Rousseeuw and Leroy (1987).

This example provides a good illustration of a masking effect. The first 10 ob-
servations are bad leverage points — very influential for the fitted regression. They
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Figure 3. Some views obtained when running the grand tour for the Bradu-Hawkins-Kass
data. It can be clearly seen that the data set is composed from three clusters. Three variants
of concentration ellipses were applied in separate runs: ordinary (top), positioned in median
centre (middle), and using robust estimators (bottom). All 3 ellipses were obtained using
the same confidence parameter 5 = 0.95.

are masked by observations no. 11, 12, 13, 14, which are good leverage points. The
data were analyzed a.o. by Hadi (1992), Atkinson and Mulira (1993), Hadi and
Simonoff (1997), Hadi and Velleman (1997), Chatterjee et al. (1997), Rocke and
Woodruff (1996).
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The out-tour with ordinary concentration ellipses evaluated for the confidence
parameter 3 = 0.95 permits at once to see what kind of outliers was implanted, which
is shown in Figure 3, top plot. None the less it can be seen that the implanted outliers
have influenced (enlarged) the ellipse. The formal identification of the outliers was
possible after performing about 100 projections.

A better performance is achieved when positioning the ellipse in the median center
of the projections. This is shown in Figure 3, middle plot.

Constructing a robust concentration ellipse outperforms the former two methods.
The implanted data vectors are recognized at once.

All the three ellipses exhibited in Figure 3 were obtained using the same confidence
parameter 8 = 0.95.

The points no. 15 — 74 have never appeared outside the concentration ellipse and
constitute, without doubts, a clean data subset. This is indicated in all count plots
obtained when using any of the three variants of the concentration ellipse.

Summarizing:

— In this example the ordinary concentration ellipse permits — in a longer run - to
identify the implanted 14 outliers. None the less, the other two variants (ellipse
positioned in median center and constructed by the robust DSD method) do it
much quicker.

~ The points 15 — 74 (in the numeration starting from zero) constitute a clean subset.

4.2. The modified wood gravity data

The data consist of n = 20 observations with p = 5 explanatory variables and one
response. The source data for this example may be found a.o. in the book by Rousse-
euw and Leroy (1987), where also the origin and history of the data is described. The
_primary task was to compute the regression of wood specific gravity (¥) in depen-
dence on five anatomical factors called X, X5, X3, X4, X5. Four of the data vectors
representing samples no. 4, 6, 8, 19 were specially contaminated and represent re-
gressional outliers. Neither the hat matrix nor any other classical diagnostic is able
to detect this fact, because the outliers are susceptible to a masking effect.

The data set was analyzed, a.o., by Atkinson (1994), Atkinson and Mulira (1993),
Hadi and Simonoff (1994), Rocke and Woodruff (1996).

Applying the out-tour algorithm with ordinary ellipses is not helpful in identifying
the outliers. The concentration ellipse constructed from ordinary covariances gets
inflated by the implanted outliers. We can see in the projections that the implanted
outliers constitute a separate cluster; none the less — when using ordinary ellipses ~
we are not able to identify them by the formal algorithm of the ordinary grand tour
presented in Subsection 3.1.
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Figure 4. Some views obtained when running the grand tour for the modified wood gravity
data. Robust concentration ellipses with confidence 8 = 0.95 were drawed. The outliers can
be identified without doubt. However, due to the shape of the data cluster, also other (i.e.
non implanted) data points appear quite often outside the borders of the ellipse, which is
recorded by the count plot. There are only 6 points left for constituting a clean subset of
the data.

However, the robust concentration ellipse constructed by the DSD method, with
confidence parameter § = 0.95, is able to identify the implanted outliers quite easy
and without doubts. Only this situation is illustrated here.

In Figure 4 we show views captured when running the grand tour and using robust
concentration ellipse with confidence parameter § = 0.95. The implanted outliers can
be seen in the projections at once. However, due to the shape of the data cluster, also
other (i.e. non implanted) data points appear quite often outside the borders of the
ellipse, which is recorded by the count plot. In particular, in Figure 4, top right, one
may see that the count plot has recorded quite often also the points no. 9 and 10.
This continues in subsequent projections, what can be seen in the exhibits bottom
left and bottom right of the same figure. None the less, it can be notified that the
implanted outliers have a pronounced frequency in the count plots.

Only one point (out of the analyzed 20 points) has zero frequency count, which
means that it was always notified as belonging to the interior of the confidence ellipse.
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Further 5 points could be indicated as having very small frequency counts. Thus, in
that case, and allowing also for very small frequency counts in the count plot, the
clean subset could be constituted from 6 data points only: no. 1, and no. 2, 4, 13,
14, 17.
Summarizing:
— This specially prepared data example needs robust concentration ellipses to iden-
tify the implanted outliers.
— A clean subset of the data could be constituted by the data vectors no. 1, 2, 4,
13, 14 and 17.

4.3. The LIEB125 data

The data were recorded by prof. Liebhart from the Medical Academy of Wroclaw
and have been previously analysed by Bartkowiak et al. (1997) in the context of
finding interrelationships between the considered variables. We use here only a part
of the data, namely a matrix X of size n X p = 125 x 9 containing data for n = 125
patients. The patients have been diagnosed as having pulmonary malfunctioning
named obstruction or obturation.

For each patient p = 9 variables are considered: (1) RV, Residual Volume, (2)
Age, (3) Height, (4) VC, Vital Capacity, (5) VC%, percentage of due VC, called
also predicted normalized vital capacity, (6) FEV1, forced expiratory volume in the
first second, (7) FEF, forced expiratory flow at the level of 0.2-1.2 VC, (8) MMFR,
maximal mid-expiratory flow rate, (9) MMFT, maximal mid-expiratory flow time.

The set of 9 observations for one patient will be in the following called also data
vector or data point, and denoted — for the i-th patient — as x; = (z;1,...,%sp).

Geometrically a data vector x; means a point located in the p-dimensional space
of the analyzed variables. Using the expression “p—dimensional data point” we have
in mind a data point in RP given by p coordinates.

To illustrate the shape of the distributions of the investigated variables, we present
in Figure 5 boxplots constructed from standardized values of the considered variables
(we had to take standardized values, i.e. subtract the mean, and divide by the re-
spective standard deviation, to make the boxplots presentable in one figure).

Looking at the plot one can see that some of the variables exhibit a high degree
of asymmetry. Several isolated points located outside the upper Tukey’s fence (i.e.
cases beyond @3 + 1.5 X IQR) are clearly visible in the boxplots.

The scatterplot matrix for the analyzed data is shown in Figure 6. It contains the
scatterplots of all pairs of the considered variables. Clearly the distributions for some
pairs of variables are not normal.
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Figure 6. Scatterplot matrix for the LIEB125 data with marked points no. 2, 42, 43, 48,
89, 91, 117, 123, 124, which appeared most frequently outside the concentration ellipse. One
can see here that generally the selected points held an extreme position.
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Figure 7. Count plots for the LIEB125 data. Left: Robust concentration ellipses were used
for recording outstanding points. Right: Ordinary concentration ellipses positioned at the
medians were used to gather the points for the plot.

To learn more about the shape of the data and identify outliers, if any, we have
applied to this data the grand tour method.

In Figure 2 we have shown already two momentary views of the projection R° —
R?; the respective plots exhibit the obtained ellipses of concentration and correspon-
ding count plots.

The ellipses of concentration in Figure 2 are ordinary ellipses.

Observing the projections, and also the count plots, we see that the data constitute
in fact one cloud of data, which is quite irregular at its borders. One may notice
several points which appear at more outstanding position, but the gap between these
points and the remaining ones is not big.

Next we have repeated the run of the grand tour with other setup: (a) the ellipses
were positioned at the medians and (b) the ellipses were based on robust estimators
as explained in Section 3.2. Both variants gave similar results. In Figure 7 we show
count plots obtained by these methods. Generally they look alike. There is no sharp
border between the data points found at outstanding positions.

On the basis of the count plots we have selected the following set of data points
which have appeared most frequently outside the concentration ellipse: 2, 42, 43,
48, 89, 91, 117, 123, 124 (remind, the numeration of the analyzed data points starts
from 0).

To see what kind of points are these, we may look at the scatterplot matrix shown
in Figure 6.

One may notice that the selected points are mainly extreme points. There is no
clear gap between these points and the main bulk of data. To decide whether these
are truly outliers, we should use another criterion. In the present situation we may
say only, that these are suspected outliers.
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Concerning the clean subset: there are 67 data points which have never appeared
beyond the border of the concentration ellipse — thus these points could be nominated
as constituting a clean subset.

It may be also noticed that a large part of the bi-variate distributions exhibited in
the scatterplot matrix does not seem to be distributed normally — thus probabilistic
considerations based on normality assumptions may be doubtful.

Summarizing:

— For this real data set, gathered in an medical ambulatory environment, applying
ordinary concentration ellipses is sufficient to learn about the shape of the data
and identify some suspected outliers.

— The same ordinary concentration ellipses yield a clean subset composed of 67 data
vectors.

Analysis of transformed data

It is known that the scale of the variables may be responsible for the fact, that
some data points appear — or do not appear — as outliers. Riani and Atkinson (2000,
p. 385) say directly: ‘Outliers in one transformed scale may not be outliers in another
scale’.

To bring the distributions nearer to normality, we have been looking for a transfor-
mation (Box—Cox transformation) which would yield the distributions of the variables
from the LIEB125 data appearing more normal. Although there are special methods
for that purpose (see, e.g. Atkinson, 1994; Velilla, 1995; Riani and Atkinson, 2000)
— we have done it by interactive graphics performed by the function bcfun, a slight
modification of the function bcdemo offered by XLispStat (Tierney, 1990). As a result
of this investigation we came to a conclusion that the Box-Cox transformation with a
suitably chosen parameter A helps to reduce the pronounced asymmetry of variables
no. 2,4, 6, 7, 8 and 9. The values of the appropriately chosen parameter A are shown
in the table below (A = 0 means the logarithmic transformation):

Vanable (2) @) ) ) ) ©)
Age VC FEV1 FEF MMFR MMFT
A 2 04 04 04 0 0

The transformations were applied to the raw (i.e. unstandardized) data. After
doing that we have stated that the distributions became more symmetric and regular.

Next we have rerun the grand tour on these transformed data.

We obtained very similar results. The formerly (i.e., for the untransformed data)
most frequently notified outstanding points appeared also to be frequently notified
for the transformed data, albeit sometimes with a changed frequency of counts.
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Figure 8. Outliers detected in the original (upper plot) and transformed data (bottom
plot). In the horizontal axis the id-numbers for the points—patients no. 0 through 124 are
shown. The vertical spikes denote how frequently the given point was notified as falling
beyond the concentration ellipse.

Figure 8 shows directly two indexplots exhibiting the frequency counts recorded
for the untransformed and transformed data. One can see that, in principle, the
notified points are the same in both plots, only the frequencies vary for some points.
Thus, we may infer that it was not the stated asymmetry of the distributions of the
analyzed variables which made some points appearing at outlying positions.

Looking at these plots one can see that the same points appear with the highest
frequency in both plots.

5. Conclusions and final remarks

The method of the grand tour, with the proposed modification of constructing a
robust concentration ellipse, is a powerful tool for detecting suspected outliers in the
data. The method may yield both suspected outliers and a clean data set. However,
it has to be said that the method detects efficiently outliers from data which have
approximately normal or elliptical shape.
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What concerns the suspected outliers, another confirmative stage of the analysis
is needed - to confirm their outlyingness and throw more light on the fact that they
appeared at outlying positions.

A further analysis of the found outliers — when clustering them by angular distances
~ is shown in Bartkowiak and Szustalewicz (2000).
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Semi-stochastyczna metoda Grand Tour jako narzedzie wykrywania
odstajgcych obserwacji i znajdywania »Czystego” podzbioru

STRESZCZENIE

Metoda Grand Tour okazala sie bardzo skutecznym narzedziem w wykrywaniu odsta-
Jjacych obserwacji. W obecnej pracy proponuje si¢ rozszerzenie posiadanych narzedzi
przez wprowadzenie odpornej elipsy koncentracji. Proponowana metoda moze stuzy¢
nie tylko do wykrywania odstajacych obserwacji, ale réwniez do znajdywania tzw.
czystego podzbioruy, tj. podzbioru homogenicznego, nie zawierajacego nietypowych i
odstajacych obserwacji. Proponowana metoda jest dosé prosta i moze by¢ z latwoscig
zaimplementowana na komputerach réwnoleglych — i jako taka moze byt uzywana do
tzw. drazenia danych (data mining). Dazialanie metody jest pokazane na dwéch przy-
kladach danych wzorcowych typu benchmark i Jednym zestawie rzeczywistych danych
pochodzacych z ambulatorium medycznego.

SLOWA KLUCZOWE: wielozmienna odstajaca obserwacja, metody graficzne, grand
tour, polgczone wykresy graficzne, elipsa koncentracji.



